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1 Introduction

The long standing problem of finding an exact description of the CFT dual to M-theory

on AdS4 × S7 (and orbifolds thereof), or the low energy limit of the world volume theory

of N coinciding M2-branes, was solved beautifully in a recent paper of Aharony, Bergman,

Jafferis and Maldacena [1]. The dual gauge theory is a special case of the N = 3 supercon-

formal Chern-Simons-matter (CSM) theories studied in [10] (see [11–15] for earlier works),

which has quiver type matter content and enhanced N = 6 supersymmetry. In particular,

the ’t Hooft limit of the N = 6 CSM theory is argued to be dual to type IIA string theory

on AdS4×CP
3. See also [9, 16–20] for subsequent works on this theory, and [2–8] for recent

works on M2-brane world volume theories.

In this paper we make a step toward understanding the details of the duality between

the N = 6 CSM theory and type IIA string on AdS4 × CP
3 in non(near)-BPS sectors,

by exploring both spin chain operators in the superconformal gauge theory (continuing

on [10]) and the Penrose limit of the string theory dual. We study the two-loop dilatation

operators in subsectors of the spin chain, as well as the dispersion relation and scattering of

impurities in an infinite chain that preserves a centrally extended SU(2|2) superconformal

algebra. The central charge of the SU(2|2) algebra plays a key role in determining the

exact dispersion relations of the impurities. It is related to the momentum P along the

spin chain in the form

Z = f(λ)
(

1 − e2πiP
)

– 1 –
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where f(λ) is a nontrivial function of the ’t Hooft coupling λ = N/k. We find that f(λ)

scales differently with λ at weak coupling (from perturbative gauge theory) and at strong

coupling (from the Penrose limit). We discuss operator mixing and match multiplets in the

weak coupling regime with those in the pp-wave limit. We also present some preliminary

discussions on the giant magnons in AdS4 × CP
3.

Note added in proof: Upon completion of the bulk of this work, we received [19]

and [16], which contain results that overlap with different parts of this paper.

2 The N = 6 Chern-Simons-Matter theory

2.1 Lagrangian

It will be useful for us to formulate N = 6 Chern-Simons-matter theory in the N = 2

language. The gauge group will be U(N) × U(N), with a pair of chiral fields Ai (i = 1, 2)

in the bifundamental representation (N, N̄), and Bi in the conjugate representation (N̄,N).

There is an N = 2 superpotential

W =
4π

k
Tr (A1B1A2B2 −A1B2A2B1) (2.1)

This theory possesses N = 6 supersymmetry, and is exactly conformal, with superconformal

group OSp(6|4). The scalar components of (A1, A2, B
†
1, B

†
2) transform in the 4 of SU(4)R,

whereas (B1, B2, A
†
1, A

†
2) transform in the 4̄.

The scalar potential can be written as V = VD + VF , where VF = |∂W/∂Ai|2 +

|∂W/∂Bi|2, and VD comes the coupling of the scalar fields to the auxiliary fields σ and σ̃

(which lie in the N = 2 gauge multiplet and take values in the adjoint of the two U(N)’s),

VD = Tr
[

(σAi −Aiσ̃)
(

A†
iσ − σ̃A†

i

)]

+ Tr
[

(σ̃Bi −Biσ)
(

B†
i σ̃ − σB†

i

)]

(2.2)

where

σ =
2π

k

(

AiA
†
i −B†

iBi

)

,

σ̃ = −2π

k

(

BiB
†
i −A†

iAi

)

.

(2.3)

There are quartic boson-fermion coupling of the form

LF = LY − Tr
(

ψ†
Ai
σψAi

− ψ†
Ai
ψAi

σ̃
)

− Tr
(

ψ†
Bi
σ̃ψBi

− ψ†
Bi
ψBi

σ
)

− Tr
(

A†
iχ

†ψAi
− χ̃†A†

iψAi
+ c.c.

)

− Tr
(

B†
i χ̃

†ψBi
− χ†B†

iψBi
+ c.c.

) (2.4)

where χ and χ̃ are fermionic auxiliary fields in the N = 2 gauge multiplet,

χ =
2π

k

(

ψAi
A†

i −B†
iψBi

)

,

χ̃ = −2π

k

(

ψBi
B†

i −A†
iψAi

)

.

(2.5)

and LY is the Yukawa coupling,

LY =
∂2W

∂φi∂φj
ψiψj + c.c.

=
4π

k
Tr (A1B1ψA2

ψB2
+ · · · )

(2.6)

– 2 –
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2.2 Supersymmetry transformations

In manifestly N = 6 supersymmetric notation, we can write the supercharges as QIJ =

(QIJ)† = 1
2ǫIJKLQ̄

KL, where I, J,K,L = 1, · · · , 4. The scalars and fermions are denoted

by φI , φ̄
I , (ψI)α and ψ̄I

α. One can explicitly identify them with the components fields of

N = 2 chiral multiplets as

φ1 = A1, φ2 = A2, φ3 = B†
1, φ4 = B†

2,

ψ1 = −ψ†
A2
, ψ2 = ψ†

A1
, ψ3 = −ψB2

, ψ4 = ψB1
.

(2.7)

The action of the supercharges on the fields is as follows

QIJφK = ǫIJKLψ̄
L,

QIJ φ̄
K = δK

I ψJ − δK
J ψI ,

(QIJ)α(ψK)β = ǫIJKLiσ
µ
αβDµφ̄

L +
2πi

k
ǫαβǫIJKL

(

φ̄LφM φ̄M − φ̄MφM φ̄
L
)

+
4πi

k
ǫαβǫIJLM φ̄

LφK φ̄
M ,

(QIJ)α(ψ̄K)β = δK
I

[

iσµ
αβDµφJ − 2πi

k
ǫαβ

(

φJ φ̄
MφM − φM φ̄

MφJ

)

]

− δK
J

[

iσµ
αβDµφI −

2πi

k
ǫαβ

(

φI φ̄
MφM − φM φ̄

MφI

)

]

− 4πi

k
ǫαβ(φI φ̄

KφJ − φJ φ̄
KφI),

QIJAµ = iσµχIJ =
2πi

k
σµ

(

φ[IψJ ] +
1

2
ǫIJKLψ̄

K φ̄L

)

,

QIJÃµ = iσµχ̃IJ =
2πi

k
σµ

(

ψ[JφI] +
1

2
ǫIJKLφ̄

Lψ̄K

)

.

(2.8)

3 Spin chains in N = 6 CS

3.1 SU(2)A × SU(2)B sector

Let us focus on the SU(2)A × SU(2)B × U(1) subgroup of SU(4)R, where Ai transform in

the representation (2,1,+1), and Bi in the representation (1,2,−1). Consider spin chains

of the form

Tr (Ai1B1Ai2B1Ai3B1 · · · ) (3.1)

These are chiral operators, but in general not primaries due to the superpotential. At

two-loop, the sextic scalar potential coming from the superpotential contributes to the

anomalous dimension of the above operator. The relevant potential term is

16π2

k2
Tr
[

(A1B1A2 −A2B1A1) (A1B1A2 −A2B1A1)
†
]

(3.2)

The potential terms in VD does not contribute at two-loop. Similarly, the terms coupling

the scalars to fermions in LF do not have the right structure to contribute to the two-loop

– 3 –
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anomalous dimension of the chiral operator either (other than an overall shift which is fixed

by the BPS bound for the chiral primaries, i.e. the operators with all the Ai’s symmetrized).

B1

A1

B1

A2

B1

B1

A2

B1

A1

B1

The two-loop integral in the above diagram is

∫

d3y

(4π)6
1

|y|3|x− y|3 ∼ 1

8π2

ln Λ

(4π|x|)3 (3.3)

where 1/(4π|x|) is the scalar propagator in position space. There is also a factor of 16π2λ2

from the vertices and contraction of color indices, and a factor of 1/2 since we were cal-

culating the two point function of the spin chain operator as opposed to the anomalous

dimension. Putting these together, we then find the two-loop spin chain Hamiltonian

H = −λ2
∑

i

(Pi,i+1 − 1) (3.4)

This is the Hamiltonian of the Heisenberg XXX spin-1/2 chain. The dispersion relation of

an impurity in this SU(2) sector moving with momentum p is

E = 4λ2 sin2(πp) + O(λ3) (3.5)

There may be a regularization scheme dependent order λ3 term, but its structure is the

same as the λ2, since the corresponding three loop diagrams are obtained by attaching

gauge propagators to the two-loop diagrams.

Now let us allow the B1’s to change into B2 as well, so that the spin chain takes

the form

Tr (Ai1Bj1Ai2Bj2Ai3Bj3 · · · ) (3.6)

Once again, at two-loop the only potential term that contributes to the anomalous di-

mension are the (N = 2) F-terms. Furthermore, the exchanges of A1 and A2 across B1

or B2 have the same amplitude, and similarly for the exchange of B1 and B2 across Ai.

Therefore, we find that at two-loop the SU(2)A ×SU(2)B spin chain is two decoupled XXX

spin-1/2 chains (of A’s and B’s respectively).

3.2 The SU(2|2) infinite chain

To gain further insight we shall consider the infinite chain (the “vacuum”)

Tr (A1B1A1B1A1B1 · · · ) (3.7)

It preserves an SU(2|2) subgroup of OSp(6|4). The bosonic part of SU(2|2) is SU(2)G ×
SU(2)r × U(1)D, where SU(2)G rotates A2, B

†
2 as a doublet, SU(2)r is the rotation group

– 4 –
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in spacetime, and U(1)D is generated by D, defined to be the anomalous dimension. More

precisely, D = ∆ − J , where ∆ is the conformal dimension and J is the eigenvalue of the

Cartan generator of SU(2)G′ , which is the group rotating A1, B
†
1 (and similarly ψ1, ψ3) as a

doublet.1 Therefore one has J(A1) = J(B1) = 1
2 ,J(A2) = J(B2) = 0, and similarly for the

fermions. The odd generators of SU(2|2) are denoted by QAα, S̄Aα, where A is an SU(2)G
doublet index, and α is the spacetime spinor index. The superalgebra is

{QAα, QBβ} = ǫABǫαβZ, {S̄Aα, S̄Bβ} = ǫABǫαβZ̄,

{QAα, S̄Bβ} = ǫABǫαβD + ǫABJαβ + ǫαβTAB .
(3.8)

where Z is a central charge, related to the momentum of the impurities in the infinite

chain, to be determined later.

Comparing with the supersymmetry transformations (2.8), the pair of supercharges

that preserve the vacuum spin chain is (Q12,−Q14) ∼ QA. In particular, J(QA) = 1
2 , and

D = ∆ − J commutes with the supercharges as required by the SU(2|2) algebra.

The basic impurities are A2, B
†
2, (ψ

†
B2

)α in place of A1, and similarly A†
2, B2, (ψ

†
A2

)α
in place of B1. At zero momentum they transform in the minimal short representation of

SU(2|2). We will write φA = (A2, B
†
2) = (φ2, φ4), and χα = (ψ†

B2
)α. From (2.8) we have

the supersymmetry transformations on (φA, χα)

QAαφB ∼ ǫABχα,

QAαχβ ∼ ǫαβ
2πi

k
(φAB1A1 −A1B1φA).

(3.9)

In terms of impurities with momentum p, we have

QAα|φB(p)〉 ∼ ǫAB|χα(p)〉,

QAα|χβ(p)〉 ∼ ǫαβ
2πi

k
(1 − e2πip)|φA(p)〉.

(3.10)

In (3.8) we have normalized QA and S̄A to be complex conjugates of one another in radial

quantization. In general they are related to the supercharges in (2.8) by a rescaling,

which a priori may depend on the coupling λ due to quantum corrections to S̄A. The

central charge of the SU(2|2) algebra takes the form Z = f(λ)(1− e2πip), where f(λ) is an

undetermined function of λ. The basic impurities (4 bosonic and 4 fermionic) fall into two

short representations:

{[1, 0]|[0, 1]} ⊕ {[1, 0]|[0, 1]} (3.11)

We will call them (2|2)A and (2|2)B impurities for short. The short multiplet saturates the

BPS bound [22, 23],

∆ − J = D =

√

1

4
+ 4f(λ)2 sin2(πp) (3.12)

By comparison with the two-loop spin chain Hamiltonian (3.4), we determine that f(λ) ≃ λ

in the weak ’t Hooft coupling limit. Let us check this relation for the fermionic impurity

1Choosing the “vacuum” (3.7), one considers the breaking SU(4)R → SU(2)G′ × SU(2)G × U(1), and

the vacuum preserves SU(2)G × U(1). The extra U(1), which assigns charge +1 to A1, B
†
1 and charge −1

to A2, B
†
2, commutes with the generators of SU(2|2).

– 5 –



J
H
E
P
0
4
(
2
0
0
9
)
0
6
6

ψ†
B2

. There is in fact only one diagram allowed by the index structure that contributes to

the exchange of A1 with ψ†
B2

across a B1 along the chain, as follows.

ψA2

B1

A1

B1

ψ†
B2

B1

B1

ψ†
B2

B1

A1

B1

There is a factor of 16π2λ2 coming from the F-term vertices, and a factor 1/2 to convert

to the anomalous dimension. The fermion propagator in position space is i/x/(4π|x|3). The

loop integral involved is

− i

∫

d3yd3z

(4π)7
(/x− /z)(/z − /y)/y

z2(x− y)2|y|3|x− z|3|y − z|3 (3.13)

whose logarithmically divergent part is

−2i
/x

|x|5
∫

d3yd3z

(4π)7
(z − y) · y

z2|y|3|y − z|3 = −2i
/x

|x|5
∫

d3y

(4π)7|y|3 y
µ ∂

∂yµ

∫

d3z
1

z2|y − z|

=
1

8π2

i/x ln Λ

(4π)3|x|5
(3.14)

The resulting anomalous dimension is identical to that of the A2 (or B†
2) impurity, which

is expected since they are in the same short multiplet.

3.3 Scattering and bound states

3.3.1 (2|2)A ⊗ (2|2)A sector

Now let us consider the scattering of a pair of basic (2|2) impurities, working perturbatively

at two-loop. First consider a pair of impurities both in the (2|2)A multiplet (or similarly,

both in the (2|2)B multiplet), consisting of the fields (A2, B
†
2;ψ

†
B2

). In particular, two A2

impurities with momenta p1 and p2 scatter according to the Hamiltonian (3.4), and can

form a bound state with dispersion relation [25]

∆ − J − 1 = 2λ2 sin2(πp). (3.15)

This saturates the BPS bound for the (4|4) short multiplet of spin content {[2, 0], [0, 0]|[1, 1]}
under SU(2)G × SU(2)r ⊂ SU(2|2). The bosonic part of this short multiplet consists of the

bound states of the pairs

A2A2, B
†
2B

†
2, A2B

†
2, ǫ

αβ
(

ψ†
B2

)

α

(

ψ†
B2

)

β
(3.16)

moving with momentum p. The wave function decays exponentially as the pair is separated

along the chain. There is another (4|4) “multiplet” of asymptotic scattering states of two

(2|2)A multiplets, of spin content {[0, 2], [0, 0]|[1, 1]}, whose bosonic part consists of

|A2(p1)B2(p2)
† −B2(p1)

†A2(p2)
†〉, σαβ

µ |
(

ψ†
B2

)

α
(p1)

(

ψ†
B2

)

β
(p2)〉 (3.17)

– 6 –
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However, they cannot form bound states at two loop. This is easiest to see from the

scattering of a bosonic (2|2)A impurity, say A2, with a fermionic (2|2)A impurity ψ†
B2

.

There is an exchange amplitude between A2 and ψ†
B2

(or B2 and ψ†
B2

), as in the diagrams

below, which allows only one bound state between them of given total momentum p. This

bound state is already included in the {[2, 0], [0, 0]|[1, 1]} multiplet, and hence there are no

fermionic bound states to pair up with potential bound states coming from (3.17).

ψA1

B1

A2

B1

ψ†
B2

B1

B1

ψ†
B2

B1

A2

B1

ψB1

B1

B†
2

B1

ψ†
B2

B1

B1

ψ†
B2

B1

B†
2

B1

It is plausible that the (4|4) bound state of a pair of (2|2)A impurities, which we denote by

(4|4)A, remains a short multiplet at strong coupling.

3.3.2 (2|2)A ⊗ (2|2)B sector

From the earlier discussion on SU(2)A × SU(2)B sector of the spin chain we know that

the A2 and B2 impurities from (2|2)A and (2|2)B do not interact at two-loop (but this

is not necessarily the case for other pairs of impurities in (2|2)A ⊗ (2|2)B). In particular

we have two-impurity states, with A2 of momentum p1 and B2 of momentum p2, denoted

by |A2(p1)B2(p2)〉, which are eigenstates of the two-loop dilatation operator. By SU(2|2)
symmetry, there must be a 16-dimensional long multiplet of threshold (non-)scattering

states, of spin content {[2, 0], [0, 2], [0, 0], [0, 0]|[1, 1], [1, 1]}. The [2, 0] part consists of the

scalar triplet

|A2(p1)B2(p2)〉, |B†
2(p1)A

†
2(p2)〉, |A2(p1)A

†
2(p2) −B†

2(p1)B2(p2)〉. (3.18)

The product representation (2|2)A ⊗ (2|2)B also consists of the SU(2)r triplet of

fermion bilinear

σ(αβ)
µ |(ψB2

)†α(p1)(ψA2
)†β(p2)〉

Naively one may expect this to be the [0, 2] part of the long multiplet. However, these

pairs of basic impurities are interacting at two-loop, and the corresponding states are not

eigenstates of the Hamiltonian. In particular, the exchange amplitude

σ(αβ)
µ | · · · (ψB2

)†α(ψA2
)†βA1 · · · 〉 → σ(αβ)

µ | · · ·A1(ψA2
)†β(ψB2

)†α · · · 〉

vanishes at two-loop, as the above diagram vanishes when the spinor indices α, β are

symmetrized. This effect leads to a repulsive contact (i.e. nearest neighbor) interaction

between the impurities (ψB2
)†α(p1) and (ψA2

)†β(p2) in the SU(2)r triplet sector.

The resolution to this seeming puzzle is due to operator mixing, between say σ
(αβ)
µ |

(ψB2
)†α(p1)(ψA2

)†β(p2)〉 and |Dµ(p)〉, the state of an impurity DµA1 or DµB1 moving at

momentum p = p1 + p2. At two-loop this can be computed from the amplitude

σ(αβ)
µ | · · · (ψB2

)†α(ψA2
)†β · · · 〉 → | · · ·A1DµB1 · · · 〉

– 7 –
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via the following Feynman diagrams

ψ

ψ

Dµ

ψ

ψ

Dµ

or
ψ

ψ

Aµ

It will turn out that we can determine the coefficients of these amplitudes simply based

on the consistency requirement that there are threshold non-scattering states of such

mixed operators.

A simple example of such mixing at zero momentum (more precisely, at momen-

tum p = 1) is the following protected operator obtained by acting on the vacuum chain

with supercharges,

(Q13)α(Q24)β |A1B1A1B1 · · · 〉 = −
∑

n=even, m=odd

|(ψB2
)†β(n)(ψA2

)†α(m)〉

+ iσµ
αβ

∑

n even

|DµA1(n)〉 − iǫαβ

×
(

∑

n odd

|σ24(n)〉 −
∑

n even

|σ̃24(n)〉
)

(Q24)β(Q13)α|A1B1A1B1 · · · 〉 =
∑

n=even, m=odd

|(ψB2
)†β(n)(ψA2

)†α(m)〉

+ iσµ
αβ

∑

n odd

|DµB1(n)〉 + iǫαβ

×
(

∑

n odd

|σ24(n)〉 −
∑

n even

|σ̃24(n)〉
)

(3.19)

where σ24 and σ̃24 are defined as

σ24 =
2π

k

(

−φ̄1φ1 + φ̄2φ2 − φ̄3φ3 + φ̄4φ4

)

,

σ̃24 =
2π

k

(

−φ1φ̄
1 + φ2φ̄

2 − φ3φ̄
3 + φ4φ̄

4
)

.

(3.20)

The sum of the two lines in (3.19) gives the total derivative of the vacuum chain, whereas

the difference gives another protected operator (in both the SU(2)r triplet and singlet

sector). A special case is when the length of the chain is 2, and we obtain a component of

the SU(4)R current

(Jµ)1
3 = Tr

[

A1DµB1 − (DµA1)B1 − i (ψB2
)†α (p1)σ

αβ
µ (ψA2

)†β (p2)
]

(3.21)

Let us now compute the operator mixing in the sector of a (ψB2
)†α and a (ψA2

)†β
impurity in the triplet of SU(2)r, or a single impurity Dµ. Denote by |n,m〉 the state with

(ψB2
)†α at position 2n and (ψA2

)†β at position 2m+1, with the spinor indices contracted by
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σαβ
µ . Denote by |D(n)〉 the state of a Dµ acting on the site 2n, and by |D′(n)〉 the state of

Dµ acting on the site 2n+1. The two-loop dilatation operator then acts on these states as

H|n,m〉 = −λ2(|n − 1,m〉 + |n+ 1,m〉 + |n,m− 1〉 + |n,m+ 1〉 − 4|n,m〉),
(

|n−m− 1

2
| > 1

2

)

H|n, n〉 = −λ2(|n − 1, n〉 + |n, n+ 1〉 − (4 − δ)|n, n〉)
− c1λ

2(|D(n)〉 − |D′(n)〉) − c2λ
2(|D′(n− 1)〉 − |D(n+ 1)〉),

H|n, n− 1〉 = −λ2(|n + 1, n− 1〉 + |n, n− 2〉 − (4 − δ)|n, n − 1〉)
− c1λ

2(|D′(n− 1)〉 − |D(n)〉) − c2λ
2(|D(n− 1)〉 − |D′(n)〉),

H|D(n)〉 = −c1λ2(|n, n〉 − |n, n− 1〉) − c2λ
2(|n + 1, n〉 − |n− 1, n − 1〉)

− c3λ
2(|D′(n− 1)〉 + |D′(n)〉 − 2|D(n)〉),

− c4λ
2(|D(n − 1)〉 + |D(n+ 1)〉 − 2|D(n)〉),

H|D′(n)〉 = −c1λ2(|n + 1, n〉 − |n, n〉) − c2λ
2(|n + 1, n + 1〉 − |n, n− 1〉)

− c3λ
2(|D(n)〉 + |D(n + 1)〉 − 2|D′(n)〉)

− c4λ
2(|D′(n− 1)〉 + |D′(n+ 1)〉 − 2|D′(n)〉).

(3.22)

where δ, c1, c2, c3, c4 are constants that can be computed from the two-loop diagrams. In

particular, δ is a potentially nonzero correction to the anomalous dimension when (ψB2
)†α

and (ψA2
)†β are next to each other (although it will turn out to be zero in this case). The

coefficients c1 and c2 are due to the mixing between adjacent fermion pair (ψB2
)†α(ψA2

)†β
and a Dµ on the nearest and next-to-nearest neigboring sites, respectively. c3 is due to

the mixing of a Dµ impurity with another Dµ on nearest neighboring sites, according to

the diagrams

D

D

D

D

D

D

D

D

whereas c4 is due to mixing of Dµ’s on next-to-nearest neighboring sites, from the follow-

ing diagrams

D

D

D

D

D

D

We will not compute these diagrams directly, but simply determine them from the existence

of the threshold states at general momenta below. The result is

δ = 0, c1 =
1√
2
, c2 = − 1√

2
, c3 = 1, c4 =

1

2
. (3.23)

A general state of total momentum p takes the form

|Ψ〉 =
∑

n,m

eπip(n+m+ 1

2
)f(n−m)|n,m〉+g

∑

n

e2πipn|D(n)〉+g′
∑

n

e2πip(n+ 1

2
)|D′(n)〉 (3.24)
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Suppose |Ψ〉 is an energy eigenstate H|Ψ〉 = λ2E|Ψ〉. This is equivalent to the equations

2 cos(πp)(f(n − 1) + f(n+ 1)) − 4f(n) = −Ef(n), n ≥ 2 or n ≤ −1

2 cos(πp)f(2) − 4f(1) +
√

2 cos(πp)(−e−πip/2g + eπip/2g′) = −Ef(1),

2 cos(πp)f(−1) − 4f(0) +
√

2 cos(πp)(−e−πip/2g′ + eπip/2g) = −Ef(0),

(cos(2πp) − 1)g + 2(cos(πp)g′ − g) +
√

2 cos(πp)(−eπip/2f(1) + e−πip/2f(0)) = −Eg,
(cos(2πp) − 1)g′ + 2(cos(πp)g′ − g) +

√
2 cos(πp)(−eπip/2f(0) + e−πip/2f(1)) = −Eg′,

(3.25)

The threshold state is given by

f(n) = − i√
2
e−i(n−1/2)α

(

cos(πp) − e−iα
)

, (n ≥ 1)

f(n) = − i√
2
e−i(n−1/2)α

(

cos(πp) − eiα
)

, (n ≤ 0)

g = sin

(

πp− α

2

)

, g′ = sin

(

πp+ α

2

)

,

E = 4 sin2

(

πp− α

2

)

+ 4 sin2

(

πp+ α

2

)

.

(3.26)

where α = π(p1 − p2) is the difference between the momenta of the two ψ impurities. In

particular the protected operators in the triplet sector of (3.19) are given by the special

case p = 1, α = 0. One can also check that there are no bound states at two loop.2 A

priori these threshold states may not survive at higher loops, but they may survive in the

pp-wave limit as unbound (2|2)A and (2|2)B impurities.

There is also operator mixing in the [0, 0] part of the long multiplet. For instance, the

fermion bilinear singlet

|ψ†
B2

(p1)ψ
†
A2

(p2)〉 = ǫαβ |(ψB2
)†α(p1)(ψA2

)†β(p2)〉 (3.27)

can mix with four bosons, via diagrams such as the following

ψA2

B1

B1

ψ†
B2

ψ†
A2

B1

A1

B1

Ai

A†
i

A1

We have seen this mixing at zero momentum already in (3.19).

2An attempt to find such bound states is to set say eiα = cos(πp) with purely imaginary α in (3.25),

but this state is growing as opposed to decaying, exponentially, in the separation between ψ†
B2

and ψ†
A2

.
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4 Penrose limit of type IIA string theory on AdS4 × CP
3

The ’t Hooft limit of the N = 6 superconformal Chern-Simons-matter theory is dual to

type IIA string theory on AdS4×CP
3 [1]. The metric on AdS4×CP

3 can be written as [27]

ds2 = R2

{

− cosh2 ρdt2 + dρ2 + sinh2 ρdΩ2
2

+ 4dµ2 + 4 sin2 µ

[

dα2 +
1

4
sin2 α

(

σ2
1 + σ2

2 + cos2 ασ2
3

)

+
1

4
cos2 µ

(

dχ+ sin2 ασ3

)2

]}

(4.1)

Here R is the radius of the AdS4, and σ1,2,3 are left-invariant 1-forms on an S3, parame-

terized by (θ, φ, ψ),

σ1 = cosψdθ + sinψ sin θdφ,

σ2 = sinψdθ − cosψ sin θdφ,

σ3 = dψ + cos θdφ.

(4.2)

The range of the coordinates is 0 ≤ µ, α ≤ π/4 , 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π , 0 ≤ χ,ψ ≤ 4π.

The Penrose limit is defined by focusing on the geodesic along χ, with µ = π/4, α = 0,

ρ = 0. To do this we can define the new variables

ρ =
ρ̃

R
, µ =

π

4
+

u

2R
, α =

r√
2R

, dx+ =
dt + dχ/2

2
, dx− = R2dt− dχ/2

2
, (4.3)

and scale R→ ∞. The metric then reduces to

ds2 = −4dx+dx− + du2 + dρ̃2 + ρ̃2dΩ2
2 + dr2 +

r2

4

3
∑

i=1

σ2
i − (u2 + ρ̃2)(dx+)2 +

1

2
r2σ3dx

+

= −4dx+dx− + du2 +

3
∑

i=1

dy2
i +

2
∑

j=1

dzjdz̄j − (u2 +

3
∑

i=1

y2
i )(dx

+)2

− i

2

2
∑

j=1

(z̄jdzj − zjdz̄j)dx
+

(4.4)

where z1, z2 are standard complex coordintes on the C
2 with radial coordinates (r, θ, φ, ψ).

To put the metric in standard pp-wave form, we make a further coordinate change

zj = e−ix+/2wj, z̄j = eix
+/2w̄j , (4.5)

and the metric becomes

ds2 = −4dx+dx− + du2 +

3
∑

i=1

dy2
i +

2
∑

j=1

dwjdw̄j −



u2 +

3
∑

i=1

y2
i +

1

4

2
∑

j=1

|wj |2




(

dx+
)2

(4.6)
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There are also fluxes in the AdS4 × CP 3 background, reducing to

F2 = −dx+ ∧ du,
F4 = −3dx+ ∧ dy1 ∧ dy2 ∧ dy3,

(4.7)

in the Penrose limit. This pp-wave solution was found in [28] (see also [29]), and preserves

24 supersymmetries as the AdS4×CP 3 background does. We shall organize the coordinates

(u, yi) as (X1,X2,X3,X4), and wi, w̄i as (X5,X6,X7,X8). In the light cone gauge X+ =

τ , Γ+Θ = 0, the Green-Schwarz action for the type IIA string is (we follow the conventions

of [30]; for earlier studies of the GS string in this pp-wave background see [31, 32])

S =
1

2πα′

∫

dt

∫ 2πα′p+

0
dσ







1

2

8
∑

i=1

[

(Ẋi)2 − (Xi′)2
]

− 1

2

4
∑

i=1

(Xi)2 − 1

8

8
∑

j=5

(Xj)
2

−iΘ̄Γ−
[

∂τ + Γ11∂σ − 1

4
Γ1Γ11 − 3

4
Γ234

]

Θ

}

(4.8)

The bosonic excitations of the type IIA string in this pp-wave background have light

cone spectrum

H =

4
∑

i=1

∞
∑

n=−∞
N (i)

n

√

1 +
n2

(α′p+)2
+

8
∑

j=5

∞
∑

n=−∞
N (j)

n

√

1

4
+

n2

(α′p+)2
(4.9)

In terms of the gauge theory spin chain variables, p+ = J/R2,3 p = n/J , R2/α′ = π
√

2λ [1],

we find the dispersion relations

E(i) =
√

1 + 2λ(πp)2, i = 1, · · · , 4,

E(j) =

√

1

4
+ 2λ(πp)2, j = 5, · · · , 8.

(4.10)

It follows from the fermion equation of motion that

(∂2
τ − ∂2

σ)Θ =
(

∂τ − Γ11∂σ

) (

∂τ + Γ11∂σ

)

Θ

= −
(

1

4
Γ1Γ11 +

3

4
Γ234

)2

Θ

=

(

5

8
+

3

8
Γ1234Γ11

)

Θ

(4.11)

Hence there are four fermions of mass 1, satisfying Γ1234Γ11Θ = Γ5678Θ = Θ, and four

fermions of mass 1/2, satisfying Γ1234Γ11Θ = Γ5678Θ = −Θ. Consequently the fermion

spectrum takes the same form as the bosonic one (4.9). Note that the Green-Schwarz action

has symmetry group SU(2)′×SU(2|2), which contains bosonic subgroup SU(2)′×SU(2)G×
SU(2)r ×U(1)D. Here SU(2)′×SU(2)G ≃ SO(4) is the rotation group on (X5,X6,X7,X8),

3To see this, note that p+ = − 1

2
p− = i

2R2

∂

∂x−
= i

R2
( 1

2
∂t−∂χ). Since χ ∼ χ+4π, the charge quantization

is such that −i∂χ = J/2, and i∂t = ∆. For the chiral primary with ∆ = J (J is the length of the alternating

A1B1 chain divided by 2), we have p+ = J/R2.
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whereas SU(2)r rotates (X2,X3,X4). The supersymmetry transformations of theXi’s take

the form
δAαu ∼ ΘAα,

δAαy
i ∼ (σi)α

β
ΘAβ,

δAαX
BĊ ∼ δB

AΘĊ
α ,

(4.12)

where XAḂ stand for (X5,X6,X7,X8) in SU(2)G × SU(2)′ bispinor notation. This is

consistent with the fact that ΘAα (satisfying Γ5678Θ = Θ) have the same mass as (u, yi),

and ΘȦα (satisfying Γ5678Θ = −Θ) have the same mass as XAḂ . The SU(2)′ symmetry

appears to be an accidental symmetry in the pp-wave limit, and reduces to a U(1) away

from the Penrose limit.

We shall note an important difference of this pp-wave limit from say the BMN scaling

of N = 4 SYM [26]: the limit here is defined by taking λ, J → ∞, while keeping λ/J2 fixed.

This may appear surprising from perturbative gauge theory, as we might have expected

from the two-loop dispersion relation (3.5) that the BMN scaling might be defined by

λ/J kept fixed. On other hand, in general the ℓ-loop corrections may contribute to the

dispersion relation in the form

E(ℓ) = λℓ

⌊ℓ/2⌋
∑

n=1

cℓ,n sin2n(πp) (4.13)

where cℓ,n are generically nonzero (say for n = 1 and ℓ > 2), and hence alters the form of

the BMN scaling at strong coupling. This indeed seems to happen in N = 6 CSM theory.

At classical dimension 1/2, there are 4 bosonic and 4 fermionic excitations. They are

the modes of (XAḂ ,ΘḂ
α ), where Ḃ is an SU(2)′ spinor index, and lie in the two short

multiplets (2|2)A and (2|2)B with respect to SU(2|2). Their exact dispersion relation at

general ’t Hooft coupling is given by the BPS bound (3.12), where the function f(λ) scales

differently with λ in the weak and strong coupling limits, see (3.5) and (4.10)

f(λ) ∼ λ, λ≪ 1,

f(λ) ∼
√

λ/2, λ≫ 1.
(4.14)

A similar phenomenon was observed in [29]. This is in contrast with N = 4 SYM, where

the central charge of the extended superconformal algebra of the infinite spin chain is

proportional to
√
λ in both the weak and strong coupling limits (although there is no

reason why this should be true at general finite ’t Hooft coupling, as pointed out in [33]).

At classical dimension 1, we have pairs of free excitations in (2|2)A ⊗ (2|2)A, (2|2)B ⊗
(2|2)B , (2|2)A ⊗ (2|2)B , as well as an additional (4|4) multiplet of spin content {[0, 2], [0, 0]|
[1, 1]} under SU(2)G×SU(2)r , which are the modes of (yi, u,ΘAα). Note that the dispersion

relation of the (4|4) multiplet is consistent with the form of the BPS bound for (4|4) short

multiplets at generic coupling,

D =

√

1 + 4f(λ)2 sin2(πp) (4.15)

– 13 –



J
H
E
P
0
4
(
2
0
0
9
)
0
6
6

It is plausible that this (4|4) multiplet survives as a short multiplet away from the pp-wave

limit. Naively, we may expect this multiplet to include the Dµ impurities. But as we have

seen at two-loop, the Dµ impurities mix with the (2|2)A ⊗ (2|2)B sector to form threshold

scattering states, and there are no bound states (at least not at two loop). It is a puzzle

to us how to describe this (4|4) multiplet perturbatively in the gauge theory, if it exists.

In the (2|2)A ⊗ (2|2)A (or (2|2)B ⊗ (2|2)B) sector, at two-loop we have found bound

states that saturate the BPS bound; they may survive as short multiplets at finite coupling,

and may become free pairs of (2|2)A (or (2|2)B) excitations in the pp-wave limit. In

(2|2)A ⊗ (2|2)B sector, we have found an 8 + 8 long multiplet of threshold (non-)scattering

states at two-loop. It is unclear whether these survive at finite coupling, and match onto

the free pairs of (2|2)A and (2|2)B excitations in the pp-wave limit.

5 Giant magnons

It is easy to find giant magnon solutions to the Nambu action in AdS4×CP
3, following [33].

Corresponding to our vacuum spin chain is a string moving along a geodesic in the CP
3, with

µ = π/4 and α = 0, parameterized by χ, in the coordinate system of (4.1). Alternatively,

we can work with projective coordinates [z1, z2, z3, z4], and consider the geodesic given by

|z1| = |z3|, z2 = z4 = 0. The first type of giant magnons move on the S2 parameterized by

χ and µ, at α = 0. In projective coordinates, this is the CP
1 defined by z2 = z4 = 0. Note

that this sphere preserves the SU(2)G which rotates z2 and z4. In particular it is consistent

to restrict the giant magnon solution to this S2. The S2, or CP
1, has its radius equal to

the AdS4 radius R =
√
πα′(2λ)

1

4 . The giant magnon solution takes the identical form as

the one in [33], with dispersion relation

E − J =
√

2λ| sin
(

∆χ

4

)

| =
√

2λ| sin(πp)| (5.1)

where the angular difference between two ends of the magnon, ∆χ/2, is identified with 2πp

(χ has periodicity 4π). This is consistent with (and saturates) the large λ limit of the BPS

bound due to the centrally extended SU(2|2) algebra of the infinite chain.

Interestingly, there is a second class of giant magnons, which lie in an RP
2 ⊂ CP

3,

rather than the CP
1. The RP

2’s that contain the geodesic |z1| = |z3|, z2 = z4 = 0 are

defined by

|z1| = |z3|,
z2

z1 − z3
= αx,

z4
z1 − z3

= βx, x ∈ R. (5.2)

This is seen more explicitly in rotated coordinates (z̃1, z̃2, z̃3, z̃4) = (z1−z3√
2
, z2, i

z1+z3√
2
, z4),

where the original geodesic is z̃3/z̃1 ∈ R, z̃2 = z̃4 = 0, and the defining equation of the

RP
2 becomes

z̃3
z̃1

∈ R,
z̃2
z̃1

= αx,
z̃4
z̃1

= βx, x ∈ R. (5.3)

where α and β are complex constants, and we have a family of RP
2’s parameterized by

(α, β), which transform as a doublet under SU(2)G. In particular, a given RP
2 lies in a

CP
2 ⊂ CP

3 which is fixed by a U(1) symmetry, and it is the fixed locus of an involution of

the CP
2. It is therefore consistent to restrict the giant magnon solution to this RP

2. We
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can describe the RP
2 as the quotient of an auxiliary sphere S̃2 by the antipodal map. Note

however that this S̃2 has radius 2R. Hence the giant magnon solutions that move along

the geodesic, which is half the equator of S̃2 (with ends identified by the antipodal map),

has dispersion relation

E − J = 2
√

2λ| sin
(

∆ϕ

2

)

| (5.4)

where ϕ is the angular variable on the equator of S̃2, ranging from 0 to 2π, and ∆ϕ is

the difference between the two ends of the giant magnon. On the RP
2, however, ϕ is

identified with periodicity π, and it is natural to propose the identification with spin chain

momentum ∆ϕ = πp. So we obtain the dispersion relation

E − J = 2
√

2λ| sin(πp/2)| (5.5)

Note that with given 0 < p < 1, there is another giant magnon with ∆ϕ = π(1−p) with the

same ends as the one with ∆ϕ = πp, and has dispersion relation E−J = 2
√

2λ| cos(πp/2)|.
The minimal energy configuration carrying momentum p should then be

E − J = 2
√

2λmin{| sin(πp/2)|, | cos(πp/2)|} (5.6)

Note that this obeys the large λ limit of the BPS bound (3.12), but does not saturate it.

Naively, based on the transformation under SU(2)G, one may want to identify the

first type of giant magnons with the (4|4) multiplet in the pp-wave limit, since it involves

excitations in the u-direction (see (4.6)), and to identify the second type of giant magnons

with the (2|2) multiplets. However, the second type of giant magnons does not saturate the

BPS bound of the SU(2|2) algebra, and should correspond to long multiplets. A potential

resolution to this puzzle is that there are fermion zero modes of the giant magnons, which

carry additional representations of the SU(2)G. It is therefore tnot clear to us how to

identify these giant magnons with the excitations in the pp-wave limit or in perturbative

gauge theory.
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